

<u>Class XI Mathematics – Notes</u> <u>Chapter 1 - Sets</u>

Venn Diagrams

Most of the relationships between sets can be represented by

means of diagrams which are known as *Venn diagrams,* named after the English logician, John Venn (1834-1883).

These diagrams consist of rectangles and closed curves usually circles. The universal set is represented u sually by a rectangle and its subsets by circles

Union of sets

For two sets A and B, the union of A and B is the set which consists of all the elements of A and all the elements of B, the common elements being

taken only once. The symbol ' \cup ' is used to denote the *union*. *Symbolically, we write* $A \cup B$ *and usually read as* '*A union* B'.

 The union of two sets A and B is the set C which consists of all those elements which are either in

A or in B (including those which are in both). In symbols, we write $A \cup B = \{x : x \in A \text{ or } x \in B\}$

Consider the following example

Let A = { *a*, *e*, *i*, *o*, *u* } and B = { *a*, *i*, *u* }. Show that A \cup B = A We have, A \cup B = { *a*, *e*, *i*, *o*, *u* } = A.

This example illustrates that union of sets A and its subset B is the set A itself, i.e., if $B \subset A$, then $A \cup B = A$.

Some Properties of the Operation of Union

i) $A \cup B = B \cup A$ (Commutative law)

ii) (A
$$\cup$$
 B) \cup C = A \cup (B \cup C) (Associative law)

- iii) $A \cup \phi = A$ (Law of identity element, ϕ is the identity of \cup)
- iv) $A \cup A = A$ (Idempotent law)
- v) $U \cup A = U$ (Law of U)

Intersection of sets

The intersection of sets A and B is the set of all elements which are common to both A and B. The symbol $`\cap'$ is used to denote the *intersection*.

The intersection of two sets A and B is the

set of all those elements which belong to both A and B. Symbolically, we write

 $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

If A and B are two sets such that $A \cap B = \phi$ then A and B are called

disjoint sets.

Some Properties of Operation of Intersection

- i) $A \cap B = B \cap A$ (Commutative law).
- ii) (A \cap B) \cap C = A \cap (B \cap C) (Associative law).
- iii) $\phi \cap A = \phi$, $U \cap A = A$ (Law of ϕ and U).
- iv) $A \cap A = A$ (Idempotent law)
- v) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributive law) i. e., \cap distributes over \cup

Difference of sets The difference of the sets A and B in this order is the

set of elements which belong to A but not to B. Symbolically, we write A – B and read as " A minus B". A – B = { $x : x \in A$ and $x \notin B$ } The sets A – B, A \cap B and B – A are mutually disjoint sets, i.e., the intersection of any of these two sets is the null set as shown in the Venn diagram

Call Me 24 X 7 @ 9818501969; 9873344867

Braj Education Centre Cultivating Academic Minds CBSE, ICSE and JEE Mains

